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A B S T R A C T   

This work presents a hybrid stochastic-deterministic algorithm for optimal design of process flowsheets, i.e., 
finding the optimal design variables and operating conditions of multiple interconnected units using rigorous 
phenomenological chemical engineering models. Unlike previous studies that propose hybrid deterministic and 
stochastic algorithms in sequential and nested arrangements, the present work proposes a parallel configuration 
to perform the hybridization. The proposed hybrid algorithm combines a stochastic method (SM) with the 
deterministic Discrete-Steepest Descent Algorithm with Variable Bounding (DSDA-VB). The SM and DSDA-VB 
strategies interact in parallel by exchanging new feasible solutions identified by the SM and improved search 
bounds determined by the DSDA-VB. The proposed method is illustrated using a thermally coupled system and a 
sequence of reactive, extractive, and traditional distillation columns. The results indicate that the proposed al
gorithm outperforms the traditional Differential Evolution with Tabu List (DETL) algorithm, showing faster and 
improved convergence.   

1. Introduction 

Flowsheet optimization is typically regarded as a two-stage process 
involving the optimal synthesis problem and the optimal design prob
lem. The former (i.e., flowsheet synthesis) determines the type of op
erations and how they are interconnected to achieve a desired 
production target from raw materials and energy inputs, e.g., see Cre
maschi (2015), Gooty et al. (2022), Göttl et al. (2022), Ryu et al. (2020), 
and Tula et al. (2017). The latter (i.e., flowsheet design) aims to deter
mine the optimal operating conditions and other operation/equipment 
related variables (e.g., discrete and continuous design variables) of the 
synthetized process with a fixed flowsheet, e.g., see Contreras-Zarazúa 
et al. (2019), Gómez et al. (2006), Hong et al. (2019), Jia et al. (2023), 
Peccini et al. (2023). The flowsheet synthesis problem often considers 
shortcut or simplified models that allow the screening of several flow
sheet configurations, which are later evaluated and optimized in the 
flowsheet design stage using rigorous nonlinear models (Ramapriya 
et al., 2018). Alternatively, the simultaneous synthesis and design 
problem using rigorous nonlinear models has also been studied in the 

literature (Aliaga-Vicente et al., 2017; Ma et al., 2021; Ma and Li, 2022; 
Zhang et al., 2018). This work is focused on flowsheet design optimi
zation problems, which are regarded as Mixed-Integer Nonlinear Pro
gramming (MINLP) problems. Formulating and initializing MINLP 
flowsheet design problems may require modeling expertise, and con
structing accurate mechanistic models for systems with complex ther
modynamic equilibrium and hydrodynamic relationships can be 
challenging and time-consuming. Typically, these problems are 
non-convex and challenging to solve due to the nonlinearity of non-ideal 
thermodynamic models, mass, and energy balances in chemical pro
cesses; the inherent non-convexity of discrete variables, and the non
linearities that arise from the interactions of discrete and continuous 
variables. Hence, optimizing the design of rigorous flowsheet models 
can turn into a computationally expensive and time-consuming process. 
In this work, a hybrid algorithm that parallelizes stochastic and deter
ministic optimization methods is proposed to exploit the advantages of 
stochastic and deterministic techniques and to reduce the computational 
effort required to optimize the design of chemical process flowsheets 
using rigorous process models. Chemical engineering software with 
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simulation and Nonlinear Programming (NLP) optimization capabilities 
is considered for modeling purposes. 

The available optimization strategies to solve the MINLP flowsheet 
design problem are generally classified into deterministic and stochastic 
(Segovia-Hernández et al., 2015). Both deterministic and stochastic 
optimization techniques exhibit limitations when solving flowsheet 
optimization problems. Local optimization strategies highly depend on 
the initialization of continuous and discrete decisions, due to “zero flow” 
numerical issues (Liñán and Ricardez-Sandoval, 2023). Also, finding a 
global solution to non-convex problems is not guaranteed with local 
solvers (Kronqvist et al., 2019). Conversely, traditional global deter
ministic MINLP methods may be computationally prohibitive when 
dealing with large-scale flowsheet design problems that consider 
continuous and discrete degrees of freedom (DOF) and rigorous 
nonlinear models for multiple processing units (Franke, 2017; Kruber 
et al., 2021). Furthermore, the performance of both local and global 
deterministic solvers may be impacted by the level of detail of the 
process models and the formulation selected to represent the in
teractions between continuous and discrete variables, e.g., Big-M, 
convex hull, etc (Liñán et al., 2020). In contrast, stochastic methods 
that use randomized search strategies and exploration techniques that 
are not tied to specific model assumptions or simplifications. This makes 
stochastic methods especially suitable to consider the simulation soft
ware as a black box. Despite their advantages, black box stochastic ap
proaches have other limitations such as a large number of function 
evaluations, which may result in slow convergence, or refined param
eter tuning to achieve optimal performance (Costa and Bagajewicz, 
2019). To partially address these issues, previous works have suggested 
different arrangements of hybrid deterministic-stochastic algorithms 
that counterbalance the benefits and drawbacks of each strategy. The 
hybrid strategies that are currently available for optimal flowsheet 
design aided with simulation software are shown in Fig. 1A and B, as 
explained below. 

The simplest hybrid deterministic-stochastic technique consists of 
applying these techniques sequentially (Fig. 1A), where stochastic 
optimization is used first, and the best solution found is further refined 
using a deterministic optimization solver, see e.g., Srinivas and Ran
gaiah (2006), Munawar and Gudi (2005), Staudt and Soares (2009), 
Chia et al. (2021), and Herrera Velázquez et al. (2022). Given that there 
is no iterative interaction between the deterministic and the stochastic 
step, the performance of neither of the algorithms improves. Moreover, 
this sequential methodology would fail at providing local optimality 
guarantees in flowsheet optimization problems implemented within a 
commercial simulator without MINLP capabilities. More advanced 
strategies hybridize stochastic and deterministic strategies in a nested 
fashion (Fig. 1B), by keeping the stochastic method in an outer loop and 
the deterministic strategy in an inner loop, see e.g., Urselmann et al. 
(2011a, 2011b, 2016) , Zhou et al. (2017), Gómez et al. (2006), and 
Holtbruegge et al. (2015). Most of those works implement a memetic 
algorithm, i.e., an evolutionary algorithm that optimizes the discrete (or 
a mix of discrete and continuous) DOF in an outer loop, while NLP 

optimization with discrete variables fixed is used for each solution 
candidate in an inner loop. Although these memetic algorithms have 
demonstrated improvements in solution quality and computational 
performance, they fail to guarantee local optimality for discrete DOF in 
the inner loop. To address this issue, Kruber et al. (2021) and Skibor
owski et al. (2015) used GAMS to investigate the inclusion of both 
discrete and continuous DOF when evaluating solution candidates in the 
inner loop. To avoid the rigorous solution of an MINLP for each solution 
candidate, Skiborowski et al. (2015) recommend a continuous refor
mulation of discrete variables such as feed locations and number of 
stages, which approximates the solution of the MINLP as a series of 
NLPs. 

Considering a simulation software to define the flowsheet design 
optimization problem exhibits a few attractive features. For instance, 
they do not require the explicit formulation of the model equations and 
they allow to modify the underlying property methods, e.g., test 
different thermodynamic packages. Also, models embedded in chemical 
engineering software can be applied to a wide range of flowsheets with 
multiple unit operations and degrees of freedom (DOF) while preserving 
the robustness of the models, thanks to their readily available unit 
operation, thermodynamic, and physical property models. Nevertheless, 
a practical limitation of a simulation tool is the lack of integration be
tween mathematical programming techniques and process simulators. 
Chemical engineering simulation software are typically able to perform 
local NLP optimizations; nonetheless, most simulation tools do not have 
MINLP optimization capabilities (Franke, 2017; Hernández-Pérez et al., 
2020; Javaloyes-Antón et al., 2022). This hinders the application of 
hybrid algorithms that rely on MINLP optimization to flowsheet design 
optimization with simulation software. For instance, the nested hybrid 
algorithm proposed by Skiborowski et al. (2015) relies on the contin
uous reformulation of a MINLP problem; however, traditional simula
tion tools do not allow the continuous reformulation of discrete 
decisions within their corresponding NLP optimizer. To the authors’ 
knowledge, a hybrid deterministic-stochastic algorithm that can guar
antee local optimality for both discrete and continuous DOF is not 
currently available to optimize the process design using chemical engi
neering simulation software. 

This work aims to propose a new hybrid stochastic-deterministic 
algorithm to optimize the design of chemical process flowsheets 
involving a mixture of continuous and ordered discrete decisions1, 
which is a common characteristic in chemical engineering applications. 
Examples of ordered discrete decisions include selecting the number of 
stages in multi-effect evaporator sequences (Hong et al., 2019), number 
of reactors connected in series or parallel (Zhang et al., 2018), or the 
number of trays and location of interconnecting streams in separation 

Fig. 1. Hybrid arrangements for optimal flowsheet design aided with simulation software. A: sequential hybrid, B: nested hybrid, and C: parallel hybrid. DOF means 
degrees of freedom. 

1 We refer to ordered discrete decisions instead of integer decisions, given 
that, depending on the problem formulation, a reformulation step may be 
needed to identify these ordered structures (Liñán and Ricardez-Sandoval, 
2023). 
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sequences (Ma et al., 2021). While previous works hybridize determin
istic and stochastic algorithms in sequential and nested arrangements 
(Fig. 1A and B), the present work proposes a parallel configuration to 
perform the hybridization, i.e., the stochastic algorithm runs in one 
processor whereas the deterministic strategy runs in an alternate pro
cessor (Fig. 1C). The proposed hybrid algorithm combines a stochastic 
method (SM) with a deterministic optimization algorithm that is based 
on the previously developed deterministic Discrete-Steepest Descent 
Algorithm (DSDA) (Liñán et al., 2021, 2020). A new version of the 
traditional DSDA that integrates this method with a variable bounding 
(VB) strategy that iteratively generates tighter search bounds and avoids 
convergence failures is presented herein. A key feature of this deter
ministic algorithm is its capability to optimize discrete DOF within 
flowsheet simulation software. This capability eliminates the need to 
rely solely on a SM for optimizing discrete decisions. Rather than 
focusing on the comparison of different hybrid strategies, this work 
highlights the performance of the proposed parallel-hybrid strategy 
against a pure SM. The utilization of pure SMs, specifically the Differ
ential Evolution with Tabu List (DETL), has undergone extensive testing 
in solving highly nonlinear problems characterized by a large number of 
equations, which include features such as discontinuous and 
multi-objective functions (Contreras-Zarazúa et al., 2022; 
González-Navarrete et al., 2022; Rangaiah, 2008; Rangaiah et al., 2020; 
Romero-García et al., 2022; Sánchez-Ramírez et al., 2022; Wang et al., 
2020; Wang and Rangaiah, 2017). SMs have proven to be efficient at 
finding good quality solutions, thanks to their convergence proofs to a 
global optimum in infinite time (Liberti and Kucherenko, 2005; Zie
linski and Laur, 2008). Nonetheless, the computational effort required 
by these methods is often significant and is still an open challenge. This 
bottleneck has prompted the exploration of a parallel-hybrid method
ology, conceived with the objective of tackling the existing computa
tional time limitations. By reducing computational time, the proposed 
parallel-hybrid approach aims to make SMs more accessible and appli
cable in real-world scenarios. The key novelties of the proposed hybrid 
algorithm are summarized as follows:  

• The proposed hybrid algorithm is the first methodology that executes 
a deterministic algorithm and a stochastic algorithm in parallel, 
which is a feature that has not been exploited by the available hybrid 
strategies for optimal design of process flowsheets that makes use of 
chemical process simulators. This ultimately leads to solutions that 
satisfy local optimality for both discrete and continuous DOF, i.e., 
concepts from discrete convex analysis (Murota, 2003) are used to 
verify the local optimality of discrete DOF, while the local optimality 
requirement of continuous variables is assessed by an NLP solver. 
These optimality criteria are not guaranteed by the available meth
odologies for flowsheet design available in the literature. 

• The DSDA-VB is developed as a deterministic MINLP algorithm in
tegrated within the proposed hybrid method. This results in the first 
application of a DSDA-based algorithm to optimize problems 
involving flowsheet simulators. The proposed DSDA-VB strategy al
lows to iteratively update the search region explored by the SM. The 
VB strategy also provides adequate variable bounds when the NLP 
solver used by DSDA-VB is prone to convergence failure, which is a 
common situation in process flowsheet simulation software. 

This study is organized as follows: Section 2 presents a general 
description of the optimization problem addressed in this work. Section 
3 describes the working principle of the SM and DSDA algorithms. This 
section also introduces the proposed hybrid algorithm and the DSDA-VB 
strategy. Section 4 illustrates the main features of the proposed method 
using a thermally coupled system and a sequence of reactive, extractive, 
and traditional distillation columns as case studies. Concluding remarks 
and future areas of research are outlined in Section 5. 

2. Problem statement 

This work considers the optimization problem presented in Eq. (1), 
which involves the minimization of an objective function (f), e.g., 
minimize capital and operating costs. Vector of variables x ∈ Rnx . rep
resents the continuous DOF of the problem, e.g., output flow specifica
tions, equipment sizes, energy requirements, among others. Variables in 
y ∈ Zny . are the discrete DOF of the problem, i.e., a given combination of 
y completely specifies structural decisions of the flowsheet such as 
number of sequential/parallel units, feed locations, location of inter
connecting flows, etc. There are other continuous variables that are 
handled internally by the simulator. Among these, variables in vector 
z ∈ Rnz . are the outputs of interest among the internally managed vari
ables, e.g., output flows and compositions that are not specified by the 
user. 

min
x,y,z

f (x, y, z)
s.t.
xL ≤ x ≤ xU , yL ≤ y ≤ yU , g(x, y, z) ≤ 0, [x, y] ∈ Ω

(1) 

Different types of constraints are considered, including bounds on 
the decision variables (xL ≤ x ≤ xU, yL ≤ y ≤ yU), constraints with a 
known mathematical expression (g(x, y, z) ≤ 0) and the constraints 
handled internally by black-box simulations ([x, y] ∈ Ω). The upper (su
perscript U) and lower (superscript L) bounds for continuous and 
discrete DOF are denoted by xL,xU and yL, yU respectively. Given that one 
of the key features of the proposed hybrid algorithm is the iterative 
refinement of these bounds, their values will be updated throughout the 
iterative solution of optimization problems. Thus, bounds xL,0, xU,0, yL,0 

and yU,0 will be referred to as the user-defined bounds of the problem, 
which impose limits over the iteratively refined algorithmic bounds as 
follows: yL,0 ≤ yL ≤ y ≤ yU ≤ yU,0 and xL,0 ≤ xL ≤ x ≤ xU ≤ xU,0. Vector of 
constraints g includes those design requirements that are specified by 
the user, e.g., product compositions. Other constraints are handled 
internally by the simulator, and these are represented through set Ω. 
These constraints include mass and energy balances, equilibrium re
lationships and thermodynamic models, reaction rates, etc. Set Ω is 
therefore defined as those combinations in x and y that guarantee 
convergence of all the constraints within the simulator. Throughout this 
work, it is assumed that objective function f is single-objective function 
that is bounded from below, and that the effective domain of f is 
nonempty. Also, functions f and g are assumed to be twice differentiable 
with respect to the continuous variables. Concerning the structure of the 
DOF, the only requirement is that variables y must be ordered, which is a 
coon feature in process flowsheets such as sequences of intensified 
distillation systems, reactor networks, multi-effect evaporator se
quences, among others. 

The solution strategy developed in this study aims to handle prob
lems involving multiple interconnected units in a flowsheet, with high 
dimensionality in the discrete (y) and continuous (x) DOF. This work 
emphasizes the application of the proposed strategy to process optimi
zation with flowsheet simulators using rigorous process models, thanks 
to the flexibility process simulators offer to include multiple operation 
units in a simulation, i.e., their readily available unit operations, non- 
ideal thermodynamic and physical property models allow to simulate 
processes with multiple interconnected unit operations. Nevertheless, 
the hybrid algorithm proposed in this work could also be applied in the 
context of optimization modeling languages, e.g., GAMS or Pyomo, 
although these would require the users to build their own first-principles 
process models. 

3. Mathematical framework 

The approach proposed in this work to solve problem (1) is a hybrid 
deterministic-stochastic algorithm that combines an SM with the herein 
proposed DSDA-VB strategy. An overview of stochastic and 
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deterministic optimization using the DSDA is provided in sections 3.1 
followed by the proposed hybrid algorithm presented in Section 3.2. 

3.1. Overview of stochastic methods and the DSDA 

Stochastic methods (SMs) aim to find the optimal solution of a 
problem by iteratively generating and evaluating a set of candidate so
lutions based on random sampling. These algorithms use a probabilistic 
approach to explore the search space and escape local optima, rather 
than relying on deterministic approaches that often converge to a local 
solution. The operation of stochastic optimization algorithms typically 
involves four steps: initialization, generation, evaluation, and selection. 
These steps are repeated until a satisfactory solution is found or a 
stopping criterion is met. The initialization step involves generating an 
initial set of candidate solutions randomly. The generation step involves 
creating new candidate solutions by applying random perturbations or 
mutations to the current population. The evaluation step involves 
calculating the objective value of each candidate solution using the 
objective function and constraints defined for the problem. The objec
tive value is used to assess the quality of the solution and compare it to 
other candidate solutions. The selection step involves choosing the best 
candidate solutions based on some criteria, such as the highest objective 
value, lowest cost, or shortest distance. Once the selection step is 
completed, the algorithm repeats the generation, evaluation, and se
lection steps until a satisfactory solution is found or a stopping criterion 
is met, e.g., the number of iterations, the quality of the best solution 
found, or a predefined threshold (Deb, 2009; Spall, 2003). 

The DSDA is a deterministic decomposition algorithm originally 
developed for integer programming (Murota, 2003), and recently 
extended to MINLP optimization problems involving continuous and 
ordered discrete decisions such as those emerging in vector y (Liñán 
et al., 2020). To initialize the DSDA, the user must provide a feasible 
initialization for the variables in y. At each iteration, the DSDA fixes the 
values of discrete decisions at their current trial value (denoted by y∗) in 
Problem (1) and solves for the remaining continuous variables x and z 
using NLP optimization to return an objective function value f∗(y∗) =

f(x∗, y∗, z∗) with optimized continuous variables x∗ an z∗. The NLP 
optimization problem that results from fixing discrete decisions in 
Problem (1) is referred to as a subproblem. Discrete variables are then 
fixed at every discrete point within a neighborhood of y∗ denoted as 
NΘ(y∗), where Θ indicates the neighborhood type. For example, this 
neighborhood typically considers those discrete points whose ℓ∞ -norm 
(infinity norm) with respect to y∗ is less or equal to l, and it is denoted by 
N∞(y∗). To reduce the computational effort, subsets of N∞(y∗) such as 
the N2-neighborhood (N2(y∗)) with 2ny + 1 points within an ℓ2 -norm of 
y∗ are often considered in practice. Each neighbor y ∈ NΘ(y∗). results in 
an NLP subproblem that returns a new objective function value f∗(y) =

f(x∗(y),y, z∗(y)), where notation x∗ = x∗(y) and z∗ = z∗(y) represents the 
optimized values of x and z with discrete variables y fixed in Problem 
(1). Given that discrete variables in y are ordered, concepts from discrete 
convex analysis can be used to define local optimality, as stated in 
Definition 1. 

Definition 1. Consider function f∗(y) = f(x∗(y), y, z∗(y)), where func
tion f∗ : Zny ↦R ∪ {+∞} takes the optimal objective function of the 
subproblem obtained after fixing y in Problem (1) for feasible values of y 
and +∞ otherwise. A point y∗ is a local minimum of f∗. if f∗(y∗) ≤ f∗(y) for 
every y that belongs to NΘ(y∗) (Murota, 2003). 

Based on Definition 1, if f(y∗) takes the minimum value within its 
neighborhood, then y∗ is declared as locally optimal and the DSDA al
gorithm stops; otherwise, the combination of discrete decisions that 
minimize the objective function is used to define a steepest-descent di
rection. NLP problems with discrete variables fixed are then sequentially 
solved along the steepest-descent direction until no improvement is 
found. Then, a new iteration of the algorithm begins with a new 
neighborhood exploration. Previous works have demonstrated that the 

DSDA outperforms traditional MINLP and GDP optimization algorithms 
when optimizing systems involving binary or Boolean variabs defined 
over ordered discrete sets (Liñán et al., 2021, 2020; Liñán and Ricar
dez-Sandoval, 2023). Note that several discrete analogues of convexity 
such as integral-convexity, M♮-convexity and L♮-convexity have been 
studied in the literature to detect when a local optimum according to 
Definition 1 is a global solution (e.g., see Chen and Li (2021); Murota 
and Tamura (2023), and Zhang et al. (2022)); however, function f∗(y). 
does not have an analytical representation because it is obtained via NLP 
optimization, i.e., the convexity properties of f∗(y) are unknown a priori. 
For this reason, only local optimality can be guaranteed in this work. 

Some of the limitations of stochastic and deterministic methods can 
be overcome by combining them into a single optimization framework 
when solving flowsheet design problems. Typically, exceeding a 
resource limit is considered as the stopping criterion for SMs, e.g., stop 
once a maximum number of objective function evaluations is attained 
(Fmax). However, selecting the appropriate resource limit (e.g., Fmax 
value) requires trial-and-error tests, given that the computational per
formance depends on the specific characteristics of each optimization 
problem, e.g., number of variables, non-linearities, and variable’s 
bounds. Additionally, the stopping criterion may differ in different runs 
of the same problem due to the stochastic nature of SM algorithms 
(Zielinski and Laur, 2008). A deterministic optimization algorithm such 
as DSDA can help to alleviate these issues since it can be used to improve 
and assess the optimality characteristics of the current best solutions 
identified by the SM. Hence, if the current SM solution is close to a 
locally optimal solution, then the execution of the SM can stop. Never
theless, the DSDA exhibits other limitations, such as the initialization 
requirement (i.e., a feasible combination of discrete decisions), or the 
exponential growth of discrete neighbors when using a ℓ∞ -norm to 
define the vicinity of a discrete point (Liñán and Ricardez-Sandoval, 
2023)The DSDA may benefit from SMs, which use randomness and 
probabilistic techniques to search for feasible and optimal solutions. 
These methods do not guarantee finding optimal solutions, but they can 
be efficient in exploring large search spaces and finding acceptable 
feasible solutions. In the case of constrained optimization problems, 
stochastic optimization methods typically use a penalty function 
approach, where the objective function is modified to include a term 
that penalizes infeasible solutions. This penalty term increases as the 
solution violates constraints, and the objective function is minimized 
while keeping the penalty as low as possible. Another approach used in 
stochastic optimization for constrained problems is the use of constraint 
handling techniques, such as the use of repair mechanisms to transform 
infeasible into feasible solutions. These mechanisms can modify the 
solution to satisfy the constraints, but they must be designed carefully to 
avoid introducing new infeasibilities. Concerning the size of the neigh
borhoods, subsets of N∞(y∗) such as NΘ(y∗) = N2(y∗). have been 
considered in previous DSDA works to decrease computational costs, at 
the expense of scarifying local optimality within the larger N∞(y∗)
neighborhood. To alleviate this issue, both the SM and the DSDA can 
perform the neighborhood exploration, by exploring NΘ(y∗)⊂N∞(y∗)
neighborhoods with DSDA and heuristically using the SM to find 
candidate solutions within the larger N∞(y∗) neighborhood. 

One problem that affects both the DSDA and SMs is the adequate 
selection of bounds to perform the search (i.e., xL,0, xU,0, yL,0 and yU,0). 
Bounds on optimization variables limit the search space of SMs, which 
can have a significant impact on the optimization process. While tight 
bounds can lead to premature convergence and limit the exploration of 
the search space, thereby leang to suboptimal solutions, overly loose 
bounds can lead to a broader search space, thus allowing the identifi
cation of attractive solutions, at the cost of lengthy (or even prohibitive) 
computational times. Selecting bounds that balance the trade-off be
tween exploration and exploitation of the search space is thus key to find 
attractive feasible solutions in acceptable turnaround times. If bounds 
are not properly selected for SMs, slow convergence, algorithm stagna
tion or lack of convergence may arise. In the case of the DSDA, an 
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Fig. 2. Proposed deterministic-stochastic algorithm. Black rectangles at the top and the bottom represent the beginning and the end of the parallelization, 
respectively. Dashed lines represent the exchange of information. 
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inadequate selection of bounds for discrete variables (i.e., yL,0 and yU,0) 
does not represent a major concern since the algorithm is successively 
fixing discrete variables and discarding infeasible neighbors. Neverthe
less, bounds for continuous variables (i.e., xL,0 and xU,0) must be care
fully selected for the NLP solver used within DSDA, whose performance 
may be affected by these bounds. For instance, the NLP optimization 
performed by process flowsheet simulators such as Aspen Plus typically 
implements Sequential Quadratic Programming (SQP), which requires 
good initial estimations and suitable bounds for the continuous DOF. 
Overly restricted variable bounds may result in optimal solutions lying 
at their lower/upper bounds, while loose bounds may result in lack of 
convergence of the SQP algorithm. 

3.2. Proposed hybrid deterministic-stochastic algorithm 

The hybrid algorithm presented in this section addresses the limi
tations described above for SMs and the DSDA by iteratively refining 
variable bounds within a parallel-hybrid algorithm. In this work, the 
variable’s bounds considered by the SM are updated by the deterministic 
algorithm. That is, iteratively refined variable bounds (i.e., modified 
algorithmic bounds xL,M, xU,M, yL,M and yU,M) are used to iteratively up
date the bounds on the decision variables (xL, xU, yL and yU), instead of 
using fixed user-defined bounds (i.e., xL = xL,0, xU = xU,0, yL = yL,0 and 
yU = yU,0) throughout the execution of the SM. For continuous variables 
(x), this is achieved by embedding the DSDA within a variable bounding 
(VB) algorithm that iteratively refines bounds xL,M and xU,M based on the 
convergence status of the NLP optimizer, i.e., the DSDA-VB algorithm. 
For discrete variables (y), the N∞ neighborhood of each locally optimal 
solution found by DSDA-VB defines refined bounds yL,M and yU,M. 

Parallelizing the SM and the DSDA-VB offers different advantages. 
First, both the SM and DSDA-VB are being executed simultaneously, 
resulting in faster convergence compared to processing the SM and 
DSDA-VB optimization steps sequentially. Also, the proposed paralleli
zation allows discrete and continuous DOF to be optimized by both the 
deterministic and stochastic techniques simultaneously, which leads to 
solutions that satisfy local optimality requirements for both discrete and 
continuous DOF. This feature would not be possible using the available 
hybrid stochastic-deterministic strategies for flowsheet optimization 
with process simulators. The parallel implementation presented in this 
work also offers advantages with respect to the independent execution of 
the DSDA and an SM, e.g., improvements in neighborhood exploration 
compared to the traditional DSDA, and improved convergence of the SM 
in situations where the traditional SMs may stagnate. 

Based on the above, the SM and DSDA-VB algorithms benefit from 
each other by considering their parallel execution in an iterative 
manner. As shown in Fig. 2, the algorithm starts with an initialization 
that consists of sequential Steps S1, S2.1 and D1. Then, the parallel al
gorithm begins by simultaneously executing Step S3 of a stochastic al
gorithm that iteratively executes the SM (see Section 3.2.2), and Step D2 
of a deterministic algorithm that iteratively executes the DSDA-VB (see 
Section 3.2.3). The main iterations of the parallel-hybrid algorithm are 
denoted by superscript k. The overall idea of the proposed algorithm is 
to initialize and start the execution of the SM (Steps S1 and S2.1) and 
have the SM running, while the deterministic algorithm is constantly 
retrieving a database consisting of all feasible solutions (FS) detected by 
the SM. The deterministic algorithm waits until enough feasible solu
tions are available in FS. Then the DSDA-VB is initialized (Step D1) by 
assigning an objective function value of +∞ to the best objective func
tion identified thus far by the DSDA-VB (f0

B ←+ ∞). The DSDA-VB uses 
the solution with the best objective function value from FS (i.e., fk

S ) as 
initialization (Step D2), and then performs a local optimization to 
generate modified bounds xL,M, xU,M, yL,M and yU,M (Steps D3 and D4), 
which are returned to the SM when there is an improvement in fk

B (see 
Step D5 and purple dashed lines in Fig. 2). If fk

B improved in Step D5, then 
the SM search is re-started using the modified bounds obtained by 

DSDA-VB (Steps S4 and S2.2). This procedure is repeated until the 
stopping criterion in Step D6 is satisfied, meaning that both the deter
ministic (Step D7) and stochastic (Step S5) algorithms are terminated. 
According to this stopping criterion, the parallel hybrid strategy stops 
when the relative difference between fk

B and fk
S is below an ϵ-tolerance. 

Note that iterations k are controlled by the deterministic algorithm i.e., 
Steps D2-D6. Iterations are managed by the deterministic steps because 
these define when the SM must be reinitialized (see Step D5 and red 
dashed lines in Fig. 2), and when both deterministic and stochastic steps 
must stop (see Steps D6 and D7 and green dashed lines in Fig. 2). Fig. S1 
in the supplementary material provides in-depth (high level) informa
tion about the algorithm presented in Fig. 2, including information 
related to solver interactions, variables and constraints considered at 
each step, and data exchange aspects. 

3.2.1. Convergence analysis and summary 
The proposed hybrid method enforces requirements over the sto

chastic and deterministic algorithms to successfully converge to a local 
optimum. In general, the hybrid stochastic-deterministic strategy 
introduced above is expected to converge and close the gap within an 
ε-tolerance (ε≥0) if the three conditions detailed in Theorem 1 are 
satisfied (a detailed proof this theorem is available in section S2 of the 
supplementary material). 

Theorem 1. Assume that: 1) the first run of the SM in Step S1 (iteration 
k=0) can identify at least two different feasible solutions which are 
added to FS; 2) the DSDA-VB in Step D4 can eventually find at least one 
locally optimal objective function (fk

D) using feasible information in FS, 
and 3) the objective function in optimization problem (1) is bounded, i. 
e., the objective function cannot be improved indefinitely without 
violating the constraints, and the SM in Steps S2.2 and S3 eventually 
converges towards the global optimum, subject to the current selection 
of bounds (xL,M, xU,M, yL,M, yU,M). Then, the proposed hybrid stochastic- 
deterministic algorithm will eventually terminate in a local optimum 
for any user-defined ε-tolerance greater or equal to 0. 

The hybrid strategy discussed above has the potential to improve the 
performance of both the SM and the DSDA when solving flowsheet 
design problems. First, the hybrid algorithm in Fig. 2 proposes a parallel 
execution of a deterministic and a stochastic algorithm that not only 
ensures local optimality for continuous variables, but also guarantees 
local optimality for discrete decisions within N2-neighbors. To the au
thors’ knowledge, these optimality guarantees cannot be provided by 
other hybrid algorithms available in the literature, see e.g., Gómez et al. 
(2006), Staudt and Soares (2009), Zhou et al. (2017), Herrera Velázquez 
et al. (2022). This parallel execution strategy also addresses some of the 
limitations that SMs or deterministic algorithms such as the DSDA 
exhibit when executed separately. For instance, the inability of DSDA to 
handle infeasible initializations is addressed by retrieving feasible so
lutions from the SM through set FS, and the prohibitive evaluation of 
N∞-neighborhoods for problems with many discrete decisions is 
addressed by delegating the N∞-neighborhood exploration to the SM. 
Also, the slow convergence of the SM with respect deterministic stra
tegies is addressed by continuously generating updated search bounds 
with the DSDA-VB method, and by defining a stopping criterion that 
incorporates stochastic and deterministic objective function values. In 
summary, the hybrid method takes advantage of the SM to identify 
feasible solutions at early stages of the execution (iteration k = 0) and 
explore a neighborhood of the current solution candidate (iterations 
k ≥ 1). The SM heuristically seeks the global optimum of the problem 
within the neighborhood it is exploring, but it does not provide opti
mality guarantees. The deterministic DSDA-VB strategy, on the other 
hand, uses information from the SM to update search limits and, under a 
deterministic approach, DSDA-VB satisfies the local optimality condi
tions in Definition 1 for the highly nonlinear model in Problem 1. This is 
expected to result in shorter computational times, as illustrated in 
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Section 4. It is also acknowledged that the proposed hybrid algorithm 
has limitations. The proposed hybrid strategy still needs improvements 
to handle multi-objective, discontinuous, and highly multimodal 
objective functions. Also, updating the search bounds of the SM using 
DSDA-VB help the algorithm to converge faster. However, the bounds 
obtained using the proposed VB strategy only guarantee feasibility and 
local optimality; hence, any set of bounds returned by DSDA-VB may 
miss the global optimum. Detailed descriptions of the steps involved in 
the proposed parallel-hybrid algorithm are discussed below. 

3.2.2. Steps followed by the stochastic algorithm 
Steps S1 and S2.1: In Step S1, the stochastic algorithm begins by 

setting up Problem (1) aided with a process simulator for flowsheet 
calculations and initializing the algorithm using: 1) the user-defined 
variable bounds (i.e., xL,0, xU,0, yL,0 and yU,0.) for Problem (1), 2) a 
value of False is selected for control flow parameter stopS., which will be 
latter used to define when to execute or reinitialize the SM, and 3) 
known feasible DOF combinations for set FS, e.g., F0

S = ∅, indicating that 
no feasible solution is known for the problem. After that, an iterative 
procedure starts with the first execution of the SM in Step S2.1. 

Step S3 and S4: According to Step S3, the execution of the SM keeps 
updating set FS with new feasible solutions until the deterministic 
strategy determines that the execution of the SM must be stopped, i.e., 
until stopS takes a value of True. As described below in Step D5, stopping 
the SM occurs whenever the deterministic algorithm identifies an 
improvement in the best locally optimal solution found. Once stopS =

True, the current SM run is stopped as indicated in Step S4. 
Steps S4 and S5: As indicated in Step S4, stopS is set back to False and 

variable bounds in Problem (1) are updated using the modified bounds 
returned by the deterministic algorithm, denoted by purple dashed lines 
in Fig. 2 (xL,M, xU,M, yL,M and yU,M.). One of the purposes of these new 
bounds is to guide the SM towards the best locally optimal solution 
identified by the deterministic strategy thus far, e.g., by keeping yL,M and 
yU,M within a N∞-neighborhood of the best local solution. Before re- 
starting the execution of the SM using these new bounds, a global 
stopping criterion is verified in Step S5. This global stopping criterion 
uses control flow parameter StopD, which stops the execution of both 
algorithms based on the best objective functions found by both the 
deterministic and stochastic algorithms. Flow parameters StopD and 
Stops (red and green dashed lines in Fig. 2) are controlled by the 
deterministic algorithm (Steps D1-D7), which is explained next. 

3.2.3. Steps followed by the deterministic algorithm 
Step D1: The deterministic strategy is constantly retrieving the most 

updated version of set FS from either Step S2.1 or Step S3 (see Steps D1 
and D2). In Step D1, the deterministic strategy must await until at least 
two different feasible solutions are available in FS, which is a require
ment to initialize the DSDA-VB strategy. These two feasible solutions 
from the stochastic technique are required to provide a feasible initial
ization ([xI,yI]) to Step D3 and an initialization for continuous variables 
bounds ([xL,S, xU,S]) for the execution of DSDA-VB in Step D4. The 
deterministic strategy is then initialized in Step D1 by assigning a value 
of +∞ to the best locally optimal objective function known f0

B , where 
subscript B stands for “best”. Having f0

B = +∞ means that no locally 
optimal solution has been detected yet. Then, the iteration count k. is set 
at k = 1 and the iterations of the parallel hybrid algorithm start. 

Steps D2 and D3: In Step D2, the solution with the best objective 
function value is retrieved from FS and assigned to fk

S , i.e., fk
S is the best 

solution reported by the stochastic algorithm at iteration k. The DSDA- 
VB algorithm is then initialized at Step D3 using the DOF associated to 
fk
S (i.e., [xI,yI]), and the maximum ([xU,S,yU,S]) and minimum ([xL,S,yL,S]) 

DOF values in FS. 
Step D4 (The DSDA-VB): Selecting adequate variable bounds for 

deterministic NLP optimization is critical to avoid execution errors and 
improve solver performance, e.g., good bounds m avoid variable 

saturation, moving away from an optimal solution, or moving into re
gions with large function values, large derivative values, or singularities. 
Despite their relevance, variable bounds typically remain fixed, and the 
task of defining appropriate bounds is typically delegated to the user. To 
alleviate this issue, the DSDA-VB algorithm has been developed as an 
optimization method that iteratively executes the DSDA and a VB 
strategy that recomputes bounds for continuous variables (xL,M, xU,M). 
The VB strategy includes three distinctive features. First, it helps to 
circumvent potential convergence issues of the NLP solver. Second, it 
allows to keep the continuous variables returned by DSDA-VB (i.e., xk) 
away from their algorithmic bounds xL,M and xU,M; otherwise, a solution 
may be erroneously declared as locally optimal. Third, the VB strategy 
helps to indirectly accelerate the SM, whose convergence rate may 
benefit from exploring a subset of the original search space that is known 
to contain at least one locally optimal solution. Note that bounds for 
discrete decisions do not need to be iteratively recalculated within 
DSDA-VB, because the DSDA can consider the user-defined bounds yL,0 

and yU,0 whenever it is executed, without affecting its performance. 
Instead, updated bounds of discrete decisions (yL,M, yU,M) are defined as 
upper and lower bounds of a discrete neighborhood of the local opti
mum identified by DSDA-VB. Note that these updated bounds of discrete 
DOF define a N∞-neighborhood consisting of 3ny combinations of 
discrete DOF, which are considered by the SM whenever it is reini
tialized. In contrast, each execution of the DSDA within DSDA-VB con
siders the smaller N2-neighborhood of size 2ny + 1, given that the 
evaluation of N∞-neighborhoods with DSDA may be computationally 
prohibitive. This means that the SM is allowed to explore many discrete 
DOF combinations that may improve the objective function, but that 
may be ignored by the DSDA-VB. In summary, the DSDA-VB executed in 
Step D4 of Fig. 2 is an algorithm that not only optimizes the discrete and 
continuous DOF of the problem locally, but also returns new bounds for 
these variables as part of the solution. 

The DSDA-VB returns an objective function (fk
D) and the locally 

optimal solution found ([xk, yk]), as well as new variable bounds 
(xL,M, xU,M, yL,M and yU,M) that are tighter than those originally defined by 
the user, i.e., xL,0 ≤ xL,M, xU,M ≤ xU,0, yL,0 ≤ yL,M and yU,M ≤ yU,0. On the 
one hand, continuous variables bounds (xL,M, xU,M) guarantee that the 
continuous variables reported by DSDA-VB ([xk, yk]) are not at their 
bounds and that NLP convergence issues are avoided, e.g., discontinu
ities in the constraints that cause convergence errors when bounds are 
inappropriately selected are avoided. On the other hand, updated 
discrete variable bounds (yL,M, yU,M) are restricted within an N∞-neigh
borhood of the locally optimal solution yk returned by DSDA-VB as 
indicated in Eqs. (2A) and (2B), e.g., for a problem with a single discrete 
DOF, the improved bounds for optimal solution yk = 3 are yL,M =

max(yL,0,2) and yU,M = min(yU,0,4). The best objective function found by 
the deterministic algorithm (fk

B) is updated after the execution of the 
DSDA-VB in Step D4 as fk

B = min
k̃∈{1,…,k}

(f k̃
D). A detailed diagram and 

description of the DSDA-VB algorithm is provided in the supplementary 
material (Section S1, Fig. S2). 

yL,M = max
(
yL,0,min

(
N∞

(
yk
)))

(2A)  

yU,M = min
(
yU,0,max

(
N∞

(
yk
)))

(2B) 

Steps D5, D6 and D7: The remaining steps (Steps D5, D6 and D7) of the 
deterministic algorithm shown in Fig. 2 decide when the stochastic al
gorithm must be reinitialized, and when both algorithms must be 
stopped through control flow parameters stopS and stopD, respectively. 
Step D5 decides if the SM must be stopped and reinitialized, based on an 
objective function improvement criterion that uses a small tolerance 
δ>0. If the best objective function found by the deterministic strategy in 
the current iteration (f k

B) improved with respect to the best objective 
found in previous iterations (f k− 1

B ), then control flow parameter stopS is 
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set to True indicating that the current SM run in the stochastic strategy 
must be stopped and reinitialized (see Steps S3 and S4 of the stochastic 
algorithm, which use the updated information from the red and purple 
dashed lines in Fig. 2). This allows the stochastic algorithm to update the 
search bounds of the SM and guide it towards the solution with objective 
fk
B . If the stochastic technique does not require to be reinitialized, then 

the global stopping criterion of both algorithms is evaluated in Step D6. 
This global stopping criterion verifies if the relative difference between 
the best solutions found by the stochastic (fk

S ) and deterministic (f k
B) 

algorithms is below an ϵ-tolerance. If the global stopping criterion is 
satisfied, the stochastic technique h thus converged near the best local 
solution found by the deterministic algorithm, hence both algorithms 
stop (Step D7). Otherwise, a new iteration of the deterministic strategy 
begins. 

4. Computational experiments 

This section presents two case studies that highlight the improve
ments in terms of solution quality and computational times when using 
the proposed hybrid algorithm to optimize the total annual cost (TAC in 
$/year) of intensified distillation flowsheets. In order to carry out the 
stochastic optimization process, we have selected the Differential Evo
lution with Tabu List (DETL) as the SM. This algorithm combines the 
advantages of Differential Evolution (DE), a powerful global search al
gorithm, with the concept of tabu search, which is a local search method 
that prevents the algorithm from revisiting previously explored solu
tions (Srinivas and Rangaiah, 2016). Fig. 3 illustrates the method used to 
implement the parallel algorithm proposed in this work. Two separate 
computers with a processor Intel® Core™ i7-3770 CPU @ 3.4 GHz and 
16 GB of RAM were used to run the tasks related to the stochastic 
(computer 1) and deterministic (computer 2) algorithms. These com
puters were allowed to interact by exchanging information through a 
mappable network folder with 10 GB of storage capacity using Microsoft 
Excel. The main codes of the hybrid algorithm (Fig. 2) were imple
mented in Matlab. These codes were connected to an Excel spreadsheet 
that worked as an interface between Matlab and Aspen Plus, which was 
used for flowsheet simulation and NLP optimization with the SQP 
method. In the case of the stochastic algorithm, Excel was also used to 

run an implementation of the DETL code that was developed in previous 
works (Sharma et al., 2012; Srinivas and Rangaiah, 2007). 

The rigorous Mass-Equilibrium-Summation-entHalpy (MESH) model 
with non-ideal equilibrium relationships available in Aspen plus was 
considered. Vector of constraints g in Problem (1) was handled by DETL 
using the penalty function method, with a high penalty factor of 1 ∗ 1010 

that is likely to avoid infeasible solutions. The traditional DETL method 
was used as a benchmark to compare the performance of the proposed 
hybrid algorithm. To perform a fair comparison, the tuning parameters 
of DETL were kept fixed for all runs of the hybrid and traditional DETL 
method, respectively. That is, both algorithms were executed under the 
same conditions. We adopted standard tuning parameters available in 
the literature for DETL (Srinivas and Rangaiah, 2016; Storn, 1996): 
population size NP = 10 ∗ (nx + ny), crossover rate CR=0.8, mutation 
factor F=0.7, tabu list size TLS = NP/2, and tabu radius TR = 1 ∗ 10− 6. 
For the DSDA exploration, N2-neighborhoods were considered. 

The objective function considered for both case studies is shown in 
Eq. (3A), which was obtained using the estimation method presented by 
Douglas (Douglas, 1988) and cost data available from previous works 
(Bernal et al., 2018; Ciric and Gu, 1994; Gómez et al., 2006). This 
function represents the addition of the annualized investment cost 
(Investmentc.) and the operating costs associated with utilities 
(Operatingc) for each column (c ∈ C) in the flowsheet. The investment 
cost in Eq. (3B) considers the column diameter in meters (dc), the total 
column height in meters (hc.), and the number of catalytic stages (ncc) if 
any. The operating cost in Eq. (3c) represents the cost of the duties of the 
reboiler (Qrc) and the condenser (Qcc) in kilowatt. This objective func
tion assumes 330 days of operation per year, an annual interest rate of 
5%, and payback period of 5 years. Note that search bounds are imposed 
over dc, hc and ncc whereas |Qrc|. and |Qcc|. are bounded below by 0, i.e., 
the objective function is bounded. 

f = TAC =
∑

c∈C
(Invesmentc +Operatingc) (3A)  

Invesmentc = 10000 + 292.67(3.28dc)1.066
(3.77hc)0.802

+ 15.29(3.28dc)1.55hc
+ 131.74(dc)2ncc

(3B)  

Operatingc = 146.8|Qrc|+24.5|Qcc| (3C) 

The distillation column models considered in this work involve 
multiple discrete DOF, continuous DOF, and constraints resulting from 
multiple interconnected units in a process flowsheet. Rigorous stage-by- 
stage nonlinear models combining mass/energy balances and non-ideal 
equilibrium relationships for each unit are considered. The problems 
considered in this work are non-convex due to the nonlinear relation
ships between the input variables (such as feed flow rate, reflux ratio, 
and tray temperatures) and the output variables (such as product purity 

Fig. 3. Hybrid algorithm implementation and software considered in this work.  

Fig. 4. Thermally coupled system that separates a mixture of isobutane, n- 
butane and n-pentane. 
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and recovery). Additionally, the large search spaces considered for 
discrete decisions and the nonlinear interactions between discrete and 
continuous variables make the problems described above challenging 
non-convex combinatorial optimization problems. 

4.1. Case study 1: A thermally coupled system 

The optimization of the thermally coupled system shown in Fig. 4 is 
considered. In this work, stages are numbered from top to bottom, i.e., 
the condenser corresponds to stage 1. The feed to the first column (C1) 
has a total molar flow rate of F FEED

total = 45 kmol/h, with mole fractions of 
χFEED

isobutane = 0.4, χFEED
n− butane = 0.2 and χFEED

n− pentane = 0.4. The first column aims 
to produce nearly pure isobutane at the top and nearly pure n-pentane at 
the bottoms. The separation of n-butane from the mixture is performed 
in another column (C2) that is thermally coupled to C1 through inter
connecting vapor and liquid flows that are connected to the last stage of 
C2. These interconnecting flows avoid the need of a reboiler for the 
second column, decreasing energy consumption with respect to a 
traditional distillation sequence (Contreras-Zarazúa et al., 2019, 2021). 
The packages available in Aspen Plus were used for thermodynamic 
calculations. The Chao-Seader property method with Lee-Kesler 
enthalpy was considered, which uses the Redlich-Kwong equation of 
state for vapor phase properties, and the Scatchard-Hildebrand model 
for liquid activity coefficients (Carlson, 1996). 

The DOF of this problem (x and y), and their corresponding bounds 

Table 1 
Variables and their bounds for the first case study, and best solution found.  

Continuous DOF (x) 

Variable Units Lower 
bounds 
(xL,0) 

Upper 
bounds 
(xU,0) 

Best solution 
found (Fig. 5A) 

Reflux ratio (C1) - 0.5 10 7.62 
Distillate flow (C1) kmol/ 

h 
17.29 19.11 18.18 

Distillate flow (C2) kmol/ 
h 

8.69 9.6 8.92 

Vapor flow (from 
C1 to C2) 

kmol/ 
h 

11.34 34.02 18.84 

Diameter (C1) m 0.1 6 1.68 
Diameter (C2) m 0.1 6 0.37 

Discrete DOF (y) 
Variable Units Lower 

bounds 
(yL,0) 

Upper 
bounds 
(yU,0) 

Best solution 
found (Fig. 5A) 

Number of stages 
(C1) 

- 5 70 55 

Number of stages 
(C2) 

- 5 70 12 

Feed stage (C1) - 2 69 24 
Liquid feed stage 

(from C2 to C1) 
- 2 69 46  

Fig. 5. Convergence plots for the optimal design of the thermally coupled system.  
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(xL,0, xU,0, yL,0 and yU,0) are summarized in Table 1. Note that the vapor 
flow that goes from C1 to C2 is assumed to be located one stage below 
the liquid flow that goes from C2 to C1. Other variables of interest that 
are retrieved from the optimization (i.e., those in vector z) are the en
ergy duties, which are required to calculate the objective function. 
Vector z also contains those variables required to specify the problem’s 
constraints. These variables include the molar fraction and flow of the 
desired component for each output stream, i.e., molar flow (F ISOBUT

isobutane) 
and mole fraction (χISOBUT

isobutane) of isobutane at the top of C1; molar flow 
(F PENTANE

n− pentane.) and mole fraction (χPENTANE
n− pentane) of n-pentane at the bottoms of 

C1, and molar flow (F BUTANE
n− butane) and mole fraction (χBUTANE

n− butane) of n-butane 
at the top of C2. The constraints considered for this problem (g(x, y, z)) 
are shown in Eqs. (4A)–(4C), which establish that: 1) a minimum molar 
recovery of 94% must be attained for all components, 2) a minimum 
molar product purity of 98%, 99% and 96% is enforced for isobutane, n- 
pentane and n-butane respectively, and 3) the heigh to diameter ratio of 
the columns must be less or equal to 20 (Barker, 2018). 

F
ISOBUT
isobutane ≥ 0.94 F FEED

isobutane, F PENTANE
n− pentane ≥ 0.94 F FEED

n− pentane, F BUTANE
n− butane

≥ 0.94 F FEED
n− butane

(4A)  

χ ISOBUT
isobutane ≥ 0.98, χ PENTANE

n− pentane ≥ 0.99, χBUTANEn− butane ≥ 0.96 (4B)  

hc/dc ≤ 20, ∀c ∈ {C1,C2} (4C) 

This case study was used to test the proposed hybrid algorithm and to 
compare the performance of the proposed algorithm and the traditional 
DETL method. Given that both methods rely on random exploration, 
different solutions may be obtained from different runs of the same 
optimization problem. Thus, this case study was solved four times under 
the same conditions using both the proposed method and DETL. A 
relative optimality gap of ε=0.05 was established for the hybrid algo
rithm; also, δ was set to 0.05, and a CPU time limit of 5000 min was 
considered for both strategies. More details about the implementation 
and execution of the hybrid algorithm are available in sections S1 and S3 
of the supplementary material. 

Despite their inherent random variability, the four trials showed a 
similar qualitative performance, i.e., the parallel-hybrid method showed 
faster convergence and better objective function values than the tradi
tional DETL. The evolution of the best objective function over time for 
these experiments is shown in Fig. 5A–D. Dotted lines represent the 
traditional DETL method, while solid and dashed lines represent the 
proposed DETL-based stochastic method and the proposed DSDA-VB 
deterministic method, respectively. The best solution identified by the 
hybrid algorithm is a local optimum and was obtained from the first trial 
(Fig. 5A). This solution corresponds to a design with the DOF reported in 

the last column of Table 1, and it is compared with the best (local) so
lutions from the other runs (Fig. 5B–D) depicted in Table 2. The results 
from the different runs in Table 2 vary slightly, showing average per
centage differences between the best-known solution (Fig. 5A) and the 
remaining solutions (Fig. 5B–D) below 1% for all continuous DOF, 
except for the vapor flow from C1 to C2 and the diameter of C2 which 
show average percent differences of 1.3% and 2.7%, respectively. The 
discrete DOF also exhibits similar values between runs, differing only by 
increments or decrements of 1 stage with respect to the best-known 
solution. As a result, the resulting objective function values in Table 2 
only differ by 0.05% on average compared to the best objective (271229 
$/year). 

Based on Fig. 5, the proposed hybrid algorithm has a higher 
convergence speed than the traditional DETL for this case study. The 
hybrid strategy closed the gap after 2435 minutes on average, while the 
traditional DETL could not find the best solution reported by the hybrid 
algorithm after 5000 minutes in any of the trials. For instance, the DETL 
objective found after 5000 minutes in Fig. 5A (275018 $/year) is still 
1.4% larger than the solution obtained at 1825 minutes by the hybrid 
algorithm (271229 $/year). Also, when the hybrid algorithm stops in 
Fig. 5A–C, the objective function reported by the traditional DETL is on 
average 26% worse than the hybrid’s strategy objective. These im
provements in convergence speed are mainly attributed to the “jump” 
that the hybrid algorithm performs once the first execution of the DSDA- 
VB algorithm (k = 1) is performed and the first group of improved 
variable bounds is returned to the SM. This is illustrated in Table 3, 
where after 209, 141, 150, and 252 minutes of execution of the hybrid 
algorithm, the DSDA-VB improves the DETL objective by 134%, 79%, 
99% and 59% for the trials shown in Fig. 5A, B, C, and D, respectively. 
Note that while the hybrid algorithm requires ∼ 102 minutes to obtain 
the objective functions in column fk

B shown in Table 3, the traditional 
DETL needs ∼ 103 minutes to obtain solutions of this quality. Although 
the first iteration of the hybrid algorithm leads to a solution for which 
DOF are locally optimal, the objective function is further improved in 
subsequent iterations of the hybrid algorithm due to the continuous 
exploration of the DETL algorithm within the continuously refined 
bounds obtained from the DSDA-VB strategy. Additional information 
about the iterations of the hybrid algorithm for optimization runs in 
Fig. 5A–D is available in section S5 of the supplementary material. 

The proposed hybrid algorithm is able to continuously identify new 
locally optimal solutions because the DETL explores solution candidates 
within N∞-neighborhoods of discrete decisions of size |N∞| = 34 = 81, 
while DSDA-VB only guarantees local optimality within N2-neighbor
hoods of size |N2| = 2(4) + 1 = 9. N2-neighbors consider the effect of 
varying one discrete decision at a time, while N∞-neighbors consider 
interactions between variables, e.g., modifying both the number of 
stages and feed location of a column simultaneously. As a result, DETL 
can guide the local search towards solution candidates that are near the 
current DSDA-VB solution but cannot be identified by this deterministic 
algorithm. For instance, Fig. 6A illustrates the convergence plot of a 
discrete DOF: the number of stages N of column C1. The variables and 
bounds plotted in Fig. 6 correspond to the best objective found by each 
algorithm at each iteration. The bounds for the number of stages in 
Fig. 6A start with the user-defined bounds (i.e., NL,0 = 5 and NU,0 = 70), 
but these are updated to NL,M = 53 and NU,M = 54 after the first local 
solution with N = 54 is identified by DSDA-VB at 209 minutes (see the 
first row in Table 3). After 529 minutes of execution of the hybrid 

Table 2 
Best solution found by each run of the hybrid algorithm (Fig. 5B-C).  

Continuous DOF (x) 

Variable Units Fig. 5B Fig. 5C Fig. 5D 

Reflux ratio (C1) - 7.40 7.64 7.61 
Distillate flow (C1) kmol/h 18.18 18.19 18.18 
Distillate flow (C2) kmol/h 8.92 8.92 8.92 
Vapor flow (from C1 to C2) kmol/h 18.99 19.29 18.95 
Diameter (C1) m 1.71 1.68 1.68 
Diameter (C2 m 0.37 0.34 0.37 

Discrete DOF (y) 
Variable Units Fig. 5B Fig. 5C Fig. 5D 

Number of stages (C1) - 56 55 55 
Number of stages (C2) - 12 11 12 
Feed stage (C1) - 25 25 25 
Liquid feed stage (from C2 to C1) - 47 46 46 
Objective function $/year 271519 271339 271281  

Table 3 
First iteration of the hybrid algorithm.  

Run Time [min] Iteration (k) fk
B (DSDA-VB) fk

S (DETL) 

Fig. 5A 209 1 275351 645529 
Fig. 5B 141 1 300204.4 537369.4 
Fig. 5C 150 1 276903.6 551489.4 
Fig. 5D 252 1 297621.2 475507.7  
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algorithm, the bounds over N are recalculated again; this time around N 
= 55, with NL,M = 55 and NU,M = 56. This change coincides with in
crements of the number of stages of C2 and the location of the liquid 
interconnection stage, i.e., multiple discrete decisions changed at 529 
minutes, which is something that could not be achieved by the DSDA-VB 
alone, which explores the search space using N2-neighborhoods (|N2| =

11). This indicates that this new solution identified at 529 minutes was 
attained thanks to the exploration performed by DETL in the larger 
N∞-neighbrohood (|N∞| = 243), which allowed varying multiple 
discrete DOF simultaneously. Note that although DSDA-VB only per
forms local optimality verifications within N2-neighborhoods, it is 
allowed to explore the user-defined search region of discrete decisions 
(∼ 107 discrete solution candidates), while DETL seeks improved solu
tions within an N∞-neighborhood of the current local DSDA-VB solution 
(81 discrete solution candidates). 

In contrast to the discrete decisions, updating the bounds of the 
continuous variables does not necessarily limit the search of continuous 
variables within a vicinity of the current best solution. Fig. 6B shows the 
behavior of the reflux ratio of unit C1. The upper bound of the reflux 
ratio begins at RRU,0, and then it its updated and kept at RRU,S, which is 
the maximum feasible reflux ratio stored in FS. Contrarily, the VB 
strategy varied the lower bound of the reflux ratio (RRL,M) during the 
first 32 iterations of the algorithm (i.e., the first 615 minutes) and then 
RRL,M remained constant at RRL,S = 7.55. This avoided binding RR at its 
lower bound in the locally optimal solutions reported by DSDA, i.e., after 
615 minutes, RRL,S = 7.55 guarantees that the best reflux ratio (7.62) is 
locally optimal, given that the optimized reflux ratio is no longer 
reaching its lower bound. Overall, updating bounds as illustrated in 
Fig. 6 allows to guide the hybrid algorithm towards locally optimal so
lutions faster than the traditional DETL, which requires more time to 
converge for this case study. 

Additional computational experiments showcasing the performance 
of the proposed parallel-hybrid algorithm against a nested-hybrid al
gorithm are presented in Fig. S5 of the supplementary material. The 
nested-hybrid strategy optimizes discrete DOF using the DETL, which 
iteratively fixes those discrete DOF and optimizes continuous DOF 
through the NLP solver available in Aspen. As shown in Fig. S5 of the 
supplementary material, the nested-hybrid approach was 464 minutes 
on average slower than the parallel-hybrid method at finding the best 
solution reported by each algorithm. Also, the best parallel-hybrid so
lution (271229 $/year) is 0.2% better than the best nested-hybrid so
lution (271669 $/year) in terms of its objective function value. 
However, the nested-hybrid exhibits two key limitations: this method 
cannot refine search bounds for continuous DOF and cannot guarantee 

local optimality in the solutions. In contrast, the proposed parallel- 
hybrid approach addresses these issues offering both optimality gua
rantees and convergence improvements over the nested-hybrid meth
odology. More details about this comparison are provided in section S4 
of the supplementary material. 

4.2. Case study 2: A sequence of reactive, extractive and conventional 
distillation columns 

This case study aims to demonstrate the applicability of the proposed 
algorithm to a more challenging process flowsheet optimization prob
lem that involves a large number of DOF and constraints, i.e., 13 discrete 
DOF and 15 continuous DOF. This case study was adapted from the work 
by Torres-Vinces et al. (2020). The sequence of distillation systems 
presented in Fig. 7 consists of a reactive distillation (RD) column that has 
an input of pure 2,3-butanediol (2,3-BD) equal to 1000 kg/h. The pure 2, 
3-BD follows a series of dehydration reactions in the RD column, which 
simultaneously generates Methyl Ethyl Ketone (MEK) as the main 
product in the top stream (T-RD) and separates the unreacted 2,3-BD as a 
bottom’s product. The dehydration reactions in the RD system also 
generate by-products in the T-RD stream such as 2-methylpropanal 
(2MPL), 3-buten-2-ol (3B2OL), water, and some 1,3-butadiene (1, 
3-BD). These by-products are separated from the MEK in subsequent 
separation stages. The first stage is an extractive distillation (ED) column 
that uses glycerol as solvent to extract water from stream T-RD. The 
solvent mixed with water is removed from the bottom of the ED column 
(steam B-ED), while the remaining components in the mixture leave the 
system from the top (steam T-ED). The latter stream (T-ED) is further 

Fig. 6. Illustrative convergence plots for the number of stages of C1 (A) and the reflux ratio of C1 (B). These plots correspond to the optimization run in Fig. 5A.  

Fig. 7. Sequence of distillation processes designed for the production of MEK 
from 2,3-BD, and the separation of by-products. 
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purified in distillation columns C1 and C2, where column C1 generates a 
bottom product rich in 3B2OL, and C2 generates a top product with 
2MPL and some 1,3-BD, and a bottom product with purified MEK. 
Moreover, stream B-ED is separated in distillation column C3, which 
recovers the glycerol (bottom product) and produces water as the top 
product. The non-random two-liquid (NRTL) thermodynamic model was 
used for the liquid phase, while the Redlich-Kwong equation of state was 
used for the vapor phase (Torres-Vinces et al., 2020). 

The DOF of this problem (x and y), and their corresponding bounds 
(xL,0, xU,0, yL,0 and yU,0) are summarized in Table 4. Variables in vector z 
include the reboiler and condenser duties for all columns, as well as 
those variables required to specify the problem’s constraints, i.e., the 
mass fraction (ωs

c) and mass flow (M s
c) of the desired component c for 

each output stream s. The user-defined constraints that are considered 
for this problem (g(x,y,z)) include those proposed by Torres-Vinces et al. 
(2020): a purity constraint of at least 99.5% (wt) is enforced over the 
MEK output (Eq. (5A)); purity constraints of at least 99% (wt) are 
considered for the 2,3-BD, 3B2OL, and 2MPL streams (Eq. (5B)); purity 
constraints of at least 98% and 99.99% (wt) are imposed over the water 
and glycerol output streams, respectively (Eq. (5C)), and a recovery of at 
least 98% (wt) is enforced for all products (Eq. (5D)). Also, the heigh to 
diameter ratio of the columns is constrained to be less or equal to 20, as 
stated in Eq. (5E) (Barker, 2018). In addition, hydrodynamic constraints 
that aim to maintain proper column hydrodynamic operation (e.g., 
enough contact between vapor and liquid phases) such as entrainment 
and downcomer flooding are imposed for all columns. These constraints 
are handled internally by Aspen Plus, i.e., these constraints are included 

in the black-box constraints Ω that appear in problem (1). Note that this 
case study is more challenging than the problems usually considered to 
test the hybrid algorithms for flowsheet optimization, which usually 
consider flowsheets involving one or two processing units as in case 
study 1, e.g., see (Gómez et al., 2006; Skiborowski et al., 2015; Ursel
mann et al., 2016). 

ωMEK
MEK ≥ 0.995 (5A)  

ωs
c ≥ 0.99, ∀(c, s)

∈ {(2, 3 − BD, 2, 3 − BD), (3B2OL, 3B2OL), (2MPL, 2MPL)} (5B)  

ωWATER
Water ≥ 0.98, ωGLYCEROL

Glycerol ≥ 0.9999 (5C)  

M
s
c ≥ 0.98M

T − RD
c ,

∀(c, s) ∈
{
(MEK,MEK), (2MPL, 2MPL), (3B2OL, 3B2OL),

(Water,WATER), (Glycerol,GLYCEROL)

} (5D)  

hc/dc ≤ 20, ∀c ∈ {RD,ED,C1,C2,C3} (5E) 

Due to the high number of variables and constraints involved, this 
problem requires much more time to converge than the previous case 
study. In the present case study, the proposed hybrid algorithm and the 
DETL strategy were left to run until a time limit of 5*104 minutes was 
reached with δ=0.05. The convergence plot of both algorithms is shown 
in Fig. 8. At 5*104 minutes, the relative gap between the traditional 
DETL and hybrid algorithms objectives is approximately 48%, while the 
gap between the DETL and DSDA-VB algorithms within the proposed 
hybrid approach is around 1%. The best solution reported by the hybrid 
algorithm has an objective function of 863423 $/year the DOF obtained 
for this solution is depicted in the last column of Table 4. In contrast, the 
traditional DETL found a much more expensive design with an objective 
function of 128280 $/year. 

Due to the problem size and the search bounds selected, the perfor
mance of the traditional DETL deteriorated significantly for this case 
study (see the dotted line in Fig. 8). Although DETL was able to identify 
feasible solutions during the early stages of its execution, it was unable 
to improve the objective function within the specified time limit. This 
performance may be attributed to the low ratio of individuals evalua
tions that converged to feasible solutions, which in this case resulted in 
stagnation of the traditional DETL algorithm, i.e., at 5 ∗ 104 minutes the 
DETL population still remains diverse and does not seem to be pro
gressing towards a particular solution. In contrast, the hybrid algorithm 
managed to handle this convergence problem by automatically 

Table 4 
Variables and their bounds for the second case study, and best solution found.  

Continuous DOF (x) 

Variable Units Lower 
bounds (xL,0) 

Upper bounds 
(xU,0) 

Best solution 
found 

Reflux ratio (RD) - 1 3.2 3.016 
Reflux ratio (ED) - 0.1 0.5 0.489 
Reflux ratio (C1) - 1 14.7 1.306 
Reflux ratio (C2) - 1 5.8 5.607 
Reflux ratio (C3) - 1 1.6 1.000 
Distillate flow (from 

RD to ED) 
kg/h 994.01 1004.00 999.258 

Distillate flow (from 
ED to C1) 

kg/h 792.57 800.53 797.241 

Bottoms flow (C1) kg/h 89.55 90.45 90.344 
Bottoms flow (C2) kg/h 434.82 439.19 437.230 
Bottoms flow (C3) kg/h 397.01 401.00 399.989 
Diameter (RD) m 0.5 3.5 2.408 
Diameter (ED) m 0.5 3.5 1.372 
Diameter (C1) m 0.5 3.5 2.286 
Diameter (C2) m 0.5 3.5 1.372 
Diameter (C3) m 0.5 3.5 0.500 

Discrete DOF (y) 
Variable Units Lower 

bounds (yL,0) 
Upper bounds 
(yU,0) 

Best solution 
found 

Number of stages 
(RD) 

- 76 86 79 

Number of stages (ED) - 45 55 45 
Number of stages (C1) - 75 85 75 
Number of stages (C2) - 45 55 45 
Number of stages (C3) - 13 23 13 
Feed stage (RD) - 40 50 49 
T-RD feed stage (ED) - 35 44 38 
Solvent feed stage 

(ED) 
- 2 10 2 

Feed stage (C1) - 45 55 53 
Feed stage (C2) - 20 30 20 
Feed stage (C3) - 9 12 10 
Location of first 

reactive stage (RD) 
- 2 7 5 

Location of last 
reactive stage (RD) 

- 75 85 78  

Fig. 8. Convergence plot for the MEK production process.  
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identifying variable bounds that, for this case study, allowed the DETL 
algorithm to improve its objective function and satisfy local optimality 
requirements for discrete and continuous variables (see solid line in 
Fig. 8). 

Table 5 summarizes some of the iterations performed by the hybrid 
algorithm for this case study. These iterations correspond to those where 
variable bounds are updated. Each iteration shows the locally optimal 
objective function obtained by DSDA-VB (fk

B), the best objective function 
identified by DETL (fk

S ), and the bounds and optimal solution for the 
number of stages (N) and reflux ratio (RR) of the RD. According to 
Table 5, the frequency at which variable bounds are updated increases 
as iterations progress, e.g., the first group of updated bounds is obtained 
after 1833 minutes at k=1, while the last group of updated bounds is 
obtained after 16926 minutes at k=272. Note that the hybrid algorithm 
spent 45% of the total execution time between iterations 272 and 442 (i. 
e., 22622 minutes). During this time interval, DSDA-VB could not 
identify better solutions, thus bounds were not updated, i.e., between 
iterations 272 and 442 DETL is aiming to improve the objective function 
without recdback from DSDA-VB. This suggests that, although the DETL 
performance improves with respect to its naïve execution, DETL is still 
the time-limiting factor when integrated with DSDA-VB. Concerning the 
convergence of variables and their bounds, the behavior obtained is 
similar to that obtained for the first case study. For example, the lower 
bounds are updated from the user-defined values (76 and 1) to 80 and 
2.96 at k=1, for N and RR, respectively. After the first iteration, variable 
bounds and values do not change significantly, but they still have an 
impact on the objective function, e.g., fk

B and fk
S improve by 1.8% and 

30% between iteration 1 and 442. Detailed data showing the evolution 
of the objective functions fk

B and fk
S is provided in section S5 of the 

supplementary material. 

5. Conclusions 

A hybrid stochastic-deterministic algorithm for optimal flowsheet 
design involving ordered discrete decisions, e.g., the number of stages/ 
reactors in a superstructure, is presented in this work. This hybrid al
gorithm relies on the parallel execution of a deterministic algorithm that 
incorporates a Discrete-Steepest Descent Algorithm with Variable 
Bounding (DSDA-VB) and a stochastic algorithm that implements a 
Stochastic Method (SM), e.g., differential Evolution with Tabu List 
(DETL). The key feature of the proposed hybrid method is the parallel 
interaction between DSDA-VB and the SM, through continuous ex
change of information. The SM is constantly generating new solution 
candidates that are optimized locally by the deterministic DSDA-VB 
method. In turn, the DSDA-VB generates new bounds for discrete and 
continuous variables that guide the SM toward a local optimum, while 
still allowing exploration by the SM within a neighborhood of the local 
optimum. The above procedure is executed iteratively, which allows the 
identification of different local optima during the search. Contrary to 
other hybrid methods, the proposed approach combines the advantages 
of a pure SM with the streamlined efficiency of the DSDA-VB, resulting 
in a practical and computationally efficient algorithm. Two case studies 
involving intensified distillation units were considered to test the 

performance of this hybrid algorithm. The results show that the pro
posed hybrid algorithm quickly identifies a good quality local solution in 
the early stages of its execution. After that, the hybrid method relies on 
the exploratory capabilities of the SM method to identify new feasible 
solutions that serve as starting points to find better local optima. Overall, 
the parallel hybridization of the DSDA-VB and an SM such as DETL re
sults in an enhanced convergence performance of both algorithms to
ward improved solutions, with respect to the naïve execution of the SM. 
In contrast to traditional hybrid approaches (e.g., memetic algorithms), 
the discrete and continuous variables obtained from the present 
approach satisfy local optimality. Future work is needed to make the 
proposed strategy accessible to a broader audience, through the devel
opment of a toolbox that readily incorporates the different steps needed 
to execute the proposed hybrid algorithm. In terms of applications, 
further research is also needed to improve the algorithm’s performance 
in handling multi-objective, and multimodal objective functions. The 
algorithm must also be expanded to consider decisions that typically 
appear in process synthesis problems, such as deciding between two 
separation or reaction technologies, e.g., molecular sieve membrane 
separation against distillation. Also, the proposed approach should be 
tested in the future with integrated design and control applications 
(Rafiei and Ricardez-Sandoval, 2020). 
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Table 5 
Convergence of objective functions f k

B and f k
S , number of stages (RD) and reflux ratio (RD) for iterations in which variable bounds are updated.   

Number of stages (RD) Reflux ratio (RD)  

Time [min] k fkB NL,M NU,M Nk RRL,M RRU,M RRk NL,M 

1833 1 878540.4 1134177 80 82 81 2.96 3.04 3.01 
3692 49 878356.7 987397 80 82 81 2.93 3.03 2.97 
5473 56 874157.8 959781.5 80 82 81 2.47 3.04 2.93 
7826 161 868193.2 946637 79 81 80 2.89 3.04 2.95 
10452 168 867731.8 946637 79 81 80 2.90 3.03 2.97 
27378 272 863423.2 882641.1 78 80 79 2.89 3.04 3.02 
50000 442 863423.2 875273.2 78 80 79 2.89 3.04 3.02  
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